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Motivation

e Conducting confirmatory phase lll trails is expensive
e Dose-finding trials are a critical component of decision process

e ldentifying right dose is &ey goalof clinical development:
— too high a dose can result in unacceptatugicity

— toolow a dose decreases chance of shovafigacy



Motivation

e FDA reported thaR0% of drugs approved between 1980 and
1999 had initial dosehangedy > 33% (80%decreased

e FDA/DIA meeting on “Good Dose Response”, 10/2004.
Failurerate of current Phase Il trials 0% ten years ago,
20% = improper dose selection in Phase Il blamed for many
such failed trials

e At same meeting, it was agreed that better understanding and
evaluation ofdose-responsshould be critical part of Phase Il
trials



Motivation (cont.’d)

Two maingoalsin phase Il studies:

— proof-of-concep{PoC) — any evidence of treatment effect

— dose-selectior which dose(s) to take into phase I11?
minimum effective dose\MED), maximum safe dosé/SD)

ICH-E4: Purpose of dose-response information is to find the

Smallesdose with a discerniblesefuleffect

Emphasis is placed on identifying or estimating theD
— Assurance that a desired effect size is plausible
Analysis strategies categorized into two broad classes:

multiple comparisonéMCP) of contrasts between doses and
modelingof dose response relationship



Finding the MED — an illustration

Difference from Placebo (95% Conf. Interval)

|
Multiple Comparison Modeling

- : Conf. Intervals on MED
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e Either D2 or D3 could be chosen as ti&D in the MCP case

e Modeling is moréflexible, but requires additional assumptions



Objectives of this presentation

e Discuss thenodelingapproach to dose finding: interpretation
of model parameters, initial estimates, and estimation of
parameters

e Methods forestimatingtarget doses of interest (e.g., MED)
from dose response models

¢ Introduce aunifiedapproach for morefficientandrobustdose
finding statistical analyses, based on a combination of multiple
comparison and modeling ideas.



Multiple comparisons and Modeling approaches
Multiple comparison{MCP)

e Usescontrastdbetween responses at different dose levels: dose
treated agategoricavariable

e Main goals test PoC and obtain minimum efficacious dose
MED or maximum safe dos&SD, while controlling FWER

Modeling

e When enough doses are present and some prior knowledge of
the dose response profile is availabl@zaametric
dose-response model can be usge: f(d,0) + ¢

e Dose Is treated as@ntinuousvariable

e Estimation of MED and other target doses is donegerse
regressior(identify dose achieving a specific response)



Advantages of each approach

MCP
e Allows strong control oFWER

e Easy toimplementandinterpret

e Does not require muchrior knowledge of dose response
relationship: less sensitive sssumptions

Modeling
e MED and othetargetdoses:anydose in observed range

e Provides confidence intervals on estimated doses
e Easy to include requirements chnical relevance

e Betterunderstandin@f dose-response relationship: useful for
planningfuture studieandsimulations



Example: a phase Il dose-finding study

Randomized double-blind parallel group trial with ab@a0
patients equally allocated twaceboor one offour active
doses: 0.05,0.2,0.6,0r 1

Normally distributed, homoscedaspcmary endpoint

Step-down procedure (hierarchical) used to preseivé&R at
5% two-sided level

All doses were well-toleratedVISD > 1
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Example (cont.’d)
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Dose-response models

e Framework consideredesponsd” (efficacy or safety)
observed foparallel grouporresponding to ordered doses
di < do < --- < dj (dq typically placebo)

e Methods can be extendedit®peated measurédata, such as
cross-ovedesignsfactorialdrug combinations, and other
more complex trial designs

e Generaldlose-respongmodel for parallel group (one-way) case
}/z'j = f(dz, 0) -+ E@'j, Eij 1251 N(O, 0'2)
e Can be often be expressedssd, 8) = 6, + 6, f°(d, 8°), with

1Y representingtandardizeanodel;initial valuesonly
required for@"
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Some typical dose-response models

l l l l l [ l | l l L | l l l l l
Exponential Quadratic Logistic
— — 1.0

Emax Linear-log Linear
1.0 ~

Response

0.0 —

Dose

Cover a wide range of possible shapes, nmoshotonic
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E...x model

£(d,0) = Ey + Emaxd/(ECs0 + d)
Standardized formf%(d, 8°) = d/(EC50 + d)

— % of max change Eo + Emax -

Fy: basaleffect (atd = 0) 5o " Fmax/?

Eo -

Fax. maxchange in effect

%
o ECs0

E(C50: dose ahalf of max change

Initial estimate forE'Cs,: from percentage of maximum effect

p* associated with dosé': 172550 = d*(1 —
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Linear in log-dose model

f(d,0) = Ey+ dlog(d+ c)
Standardized formf°(d, 8°) = log(d + 1)
Fy: basaleffect (atd = 0)

0. log-doseslope

No need for initial estimates

0 exp(l)—1

Dose
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Exponential (power) model

o /(d,0) = Eo+ By exp(d/d)

o Standardized formf%(d, 8°) = exp(d/9)
e Basaleffect (atd = 0): Eg + £

e ) determines rate of increase

e [nitial estimate ford: from percentage of effegt” associated
with dosed*: § = d* /log(1 + p*)

ST ‘ E() +E1 exp(l)

Dose



Quadratic model

o f(d,0) = Ey+ fid+ [ad?

e 32 < 0 =-umbrella(or inverted-U) shape&}, > 0 = U-shape
— will assume umbrella-shape

e Standardized formf°(d, 8°) = d + §d?, § = B2/| 5]
e Dose corresponding tmaxresponsedy,x = —1/26

e E( basaleffect (atd = 0)

e Initial estimate ford based ond*, p*):

s ) Q- VISP 2, < doy
(14 I=pr)/2d*, d* > dop
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Logistic model

o f(d,0) = Eo+ Emax/ {1+ exp |[(ECs0 — d) /0]}
— Ey: basaleffect (not placebo effect)
— Enax: maxchange from basal effect
— EG5p: dose ab0% of max change
— §: controls rate of change

e Standardized formf°(d,8°) = 1/ {1 + exp [(ECs9 — d) /5]}
— representpercentag®ef maximum change
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Logistic model (cont.'d)

EO + Emax

E |
Eo + TFexp(=D)

! !
0 EC50 ECs50 + 9
Dose

Initial estimates require two pointd;, p7) and(d;, p3):

dy — dj BC., — flosit(ps) — dzlogit(pi)
logit(p5) — logit(p})’ logit(p3) — logit(p})

wherelogit(p) = log(p/(1 — p))

5 =
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Estimating the MED

For absoluteclinically relevant differenceé\ with respect to
smallest dosd;: MED = minge (4, 4,1{f(d,0) > f(d1,0) + A}

Letpys = f(d, 5) denotepredicted responsat dosed, with
correspondingonfidence intervdlLy, Uy]
Three differentulesproposed for estimating MED:

_ MED, = Minge (4,,d,]10a > Pa, + A, Lg > pa, }

— NTE\DQ = Milge (4, ,d]1Pd > Pd, + A, Lg > pa, }

— MED3 = Minge (g, dy) 1 La > pa, + A}

By constructionMED; < MED, < MED5
e Estimated MEDs mayiot existfor some, or all of the methods

Different levels may be used farediction bandge.g., 60%,
80%) leading to possibly different MED estimates
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Model fitting in phase Il example

e Nonlinear models, such as.E; and exponential, can be fitted
In SAS with PROGNLIN ; in S-PLUS or R withnls function

e Assume 50% of maximum effect attaineddat 0.2

e To getinitial estimatedor Ey and E,..x: conditional on
ECs50 = 0.2(1 — 0.5)/0.5 = 0.2

Enax modelislinearin d/(d 4 0.2):

> phasell[1:2,] # data
response dose
1 -0.021950 0.05
2 -0.057114 0.00
> Im(response ~ I(dose/(dose+0.2)), phasell)
Coefficients:
Intercept) I(dose/(dose+0.2 ~ ~
( 0.58)948( ( ))0.76854 = Lo = 0.29, Eyax = 0.77
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Model fitting in phase Il example (cont.’d)

Fitting the E,.x model:

> fmEmax <- nls (response ~ e0 + eMax =*dose/(dose + ec50),
data = phasell,
start = list(e0=0.29, eMax=0.77, ec50=0.2))
> summary(fmEmax)

Parameters:
Value Std. Error t value
e0 0.31092 0.090122 3.4500
eMax 0.82969 0.225388 3.6812
ecb0 0.29685 0.275299 1.0783
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Dose selection and MED estimation in phase Il example

Obtaining MED estimates using = 0.4 and80%confidence level

> predEmax <- predict (fmEmax, list(dose = seq(0,1,0.01)),
se.fit =T)
> predEmaxDF <-
data.frame(dose = seq(0,1,0.01), pred = predEmax$fit,
I = predEmax$fit - 1.282 * predEmax$se.fit,
uu = predEmax$fit + 1.282 x predEmax$se.fit)
> predEmaxDF

dose pred | uu
1 0.00 0.31092 0.19538 0.42645 placebo effect
18 0.17 0.61304 0.51085 0.71524 MED1
29 0.28 0.71365 0.61692 0.81037 MED?2

43 0.42 0.79703 0.71464 0.87942 MED3

23



Dose selection and MED estimation (cont.'d)

MED; = 0.17, MED, = 0.28, andMED3 = 0.42

Response

Placebo effect

0.2 4 ~ —
MED1 MED2 MED3

0.0 0.2 0.4 0.6 0.8 1.0
Dose
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Model selection problem

Truedose-response model is typicallypknown

Choice of aworking modelmay have a substantial impact on
dose selection

Current model selection approaches mostly do not take into
account additionadtatistical uncertaintassociated with the
choice of the dose-response model

How to combine MCPandmodeling using the advantages of
both approaches?
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MCP-Mod: a unified dose-finding approach

Set ofcandidatamodels

l l

Optimumcontrasicoefficients

l l

Selection ofsignificantmodels while controlling"WW E R

l l

Selection of asinglemodel usingmax ¢, AIC,
possibly combined with external data

l l

Dose estimation and selection/ £ D, M SD;, .. .)
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Model selection: TestingPoC

Models in candidate set are tested using optimal contrasts to
obtaint-statistics T = /nC'Y /s, with C = [c; - - - )]

Optimal contrast maximizeson-centralityparameter of

associated-statistics:r = c'p /o \/ S 2/

Underbalanceallocation,optimalcontrast maximizeg' u:
Copt = (0 — 111) /|0 — 11|| —locationandscaleinvariant

Under unbalanced allocatioa,, is obtained via numerical
optimization

copt depends omrior estimates fostandardizednodel
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Model selection: TestingPoC (cont.'d)

e t-statistics for candidate models apently distributed as
multivariatet with correlation matrix determined by the model
contrasts

e Critical valueq for individual tests derived from multivariate
t-distribution: control$~WERIn strong sense

o If maxT < ¢, PoCis not established (no apparent
dose-response relationship)
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Model selection

Models with7;,, > ¢ are kept for possible use @iose selection

Different criteria may be used to choosese-responsmodel
among those passing tRaC filter

Once PoC is established, a most adeqdate-responsmodel
IS selected among those indicatedsagificantby the PoC
tests, andarget dosesf interest are estimated using the fitted
model

Different criteria can be used tthoosehe dose-response
model: e.g., max-statistic, min AIC or min BIC
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Simulation study

e Objective to investigate performance of MCP-Mod method with
respect td?oC identificatioranddose selectio(MED)
e Design
— Same doses and assumptions as in phase Il example

— Parallel groups witlequalsample sizes per treatment:
n = 10,25, 50, 75,100 and150

— Standard deviations for response= 1.478 for PoC evaluation
ando = 0.65 (same as in phase Il example) for dose selection
evaluation

— Nine different generatingose-responsmodels
— 10,000simulated trialdor each sample size model comb.

e Likelihood ratio test (LRT) and step contrasts included for
comparisorwith MCP-Mod in PoC evaluation



Simulation study: generating dose-response models
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Simulation results: PoC power and Type | error rate

Power (%)
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PoC step model vs. dose selection model

Probability (%)

Probability (%)

Probabllltles ofselectlnggeneratlng model |ﬁ>oCstep

LLLLLL

Sample size

Probabillities ofusinggenerating model forlose selection

Sample size

33



MED estimation: n = 75, conf. band level =80%

MED estimate
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Results from simulation study

PoC power simulation results
e MCP-Mod has PoC power comparable to MCP methods (LRT, step

contrasts) in the case afonotonicshapes an@ietterthan MCP
methods for non-monotonic shapes

e All methods give good control over tH@/VER, staying close to the
nominal 5% level for all sample sizes

MED estimation results
e Dose selection is a mow&fficult problem than establishing PoC.:

sample sizes that have sufficient powerRFarCdo not give enough
precision for estimation aflED

o M/E\DQ tends to havéetter performancm estimating target doses:
MED; tends to underestimat®]ED5 to overestimate

e Precisionandbiasof dose selection depend on dose-response shape:
performance tends to improve with amount of curvature
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Conclusions

Described ainifiedapproach for analysis of dose finding studies:
testingPoCandestimatingtarget doses, thus essentially combining
iIndependent Ph lla and Ph Ilb studies into a single Ph Il study

Proposed method, MCP-Mod, combines advantagés? and
modelingapproaches while includingarningandconfirmatoryin a
single study

Advantage of MCP-Mod is itgreater flexibilityin searching for and
Identifying target doses

Extensions of MCP-Mod currently under investigation: londihal
data, binary outcomes, robust designs, two-stage desgnsitivity
analysis
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